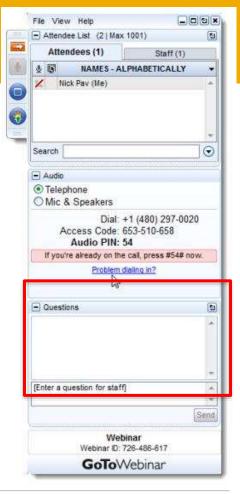
MSME TRAINING SERIES

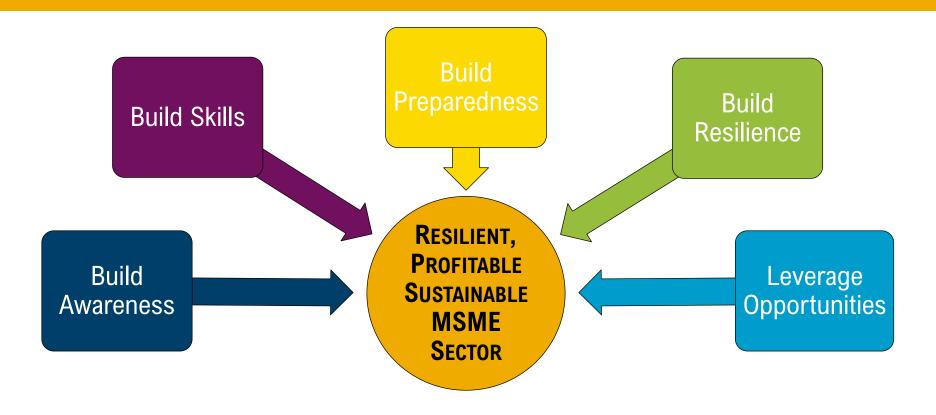
#03: Energy Efficiency – Approach, Opportunities and Technology

28th January 2021 | 3 PM - 5:15 PM IST

Image credit: Surva Prakash/unsplash



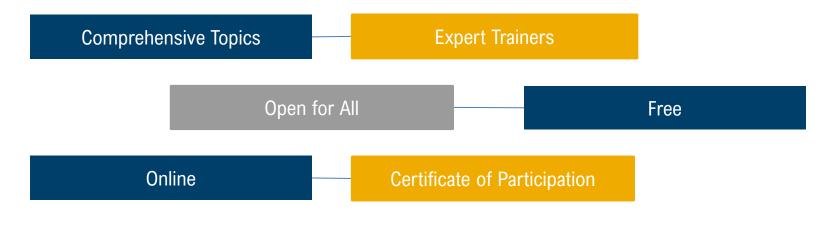
INTRODUCTION


Shubhangi Gupta, Consultant, WRI India

GUIDELINES

- Attendees will remain in listen-only mode.
- Today's presentation is being recorded and will be shared with registered participants.
- Please use the "Questions" pane to type in your comments or questions during the webinar.

OBJECTIVES OF THE TRAINING SERIES


TOPICS COVERED IN THE TRAINING SERIES

^{*} Hyperlink to event page with session recording and materials attached

ABOUT THE TRAINING SERIES

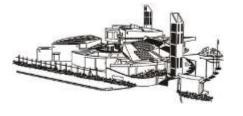
- Part of the Carbon Market Simulation Project, facilitated by WRI India and supported by MacArthur Foundation
- Conducted in partnership with Confederation of Indian Industry (CII)

NEED FOR ENERGY EFFICIENCY

I.1 According to you, the biggest challenge for implementing energy efficiency in MSMEs is the lack of?

Poll Results:

41%
32%
16%
11%


AGENDA

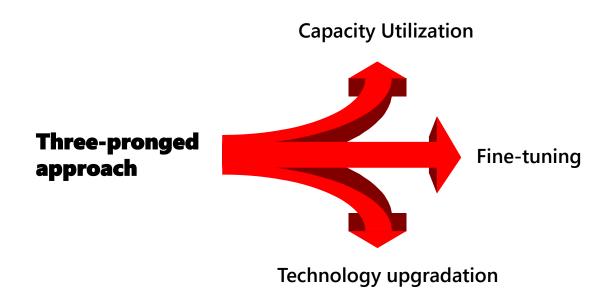
Introduction	Shubhangi Gupta, WRI India		
Approach to Energy Efficiency in MSMEs	Akshay Koul, CII-GBC		
Energy Efficiency in Value Chain: OEM Perspectives	Amol M. Magdum, Godrej & Boyce Mfg. Co		
Opportunities from Energy Efficiency: MSME Perspectives	Suresh Manoharan, Best Colour Solutions		
Energy Efficiency in MSMEs: Success Stories	Kajol, <i>Manager, WRI India</i>		
Question & Answer Session I			
IoT/Al Solutions for Energy Efficiency	Vinit Kulkarni, Greenovative Energy Solutions		
Energy Efficiency in Compressed Air Systems	Hidhay K., Systel Group of Companies		
Energy Efficiency in Heating and Cooling Systems	Navin Kumar and Sandeep Koundinya, Aspiration Energy and Energy & Emissions Lab		
Question & Answer Session II			
Closing Remarks	Atik Sheikh, Counsellor, CII-GBC		

APPROACH TO ENERGY EFFICIENCY IN MSMEs

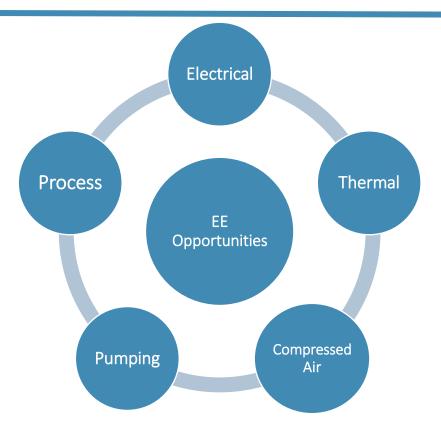
Akshay Koul, Associate Counsellor, CII-GBC

Energy efficiency enabling cost saving and reducing environment impacts

28 January, 2021


Background – Energy Efficiency (EE)

- Optimal utilization of energy without any trade-offs in smoother operations and safety
- Results in improved operation and reduced costs
- Mature concept in large industry and medium scale units
- Energy Efficiency is cross sectoral and continual


Approach towards Energy Efficiency

EE – Opportunities

EE Measures - Electrical

Electrical Distribution

- Optimum transformers loading
- Power Factor Optimisation
 - Automatic Power Factor Controller
- Voltage Optimisation
- Energy Efficient Motor System
- Application of Variable Frequency Drive
- Energy Monitoring Systems

EE Measures – Pumps & Compressors

❖ Pumps

- Optimum design (margin)
- Installation of Energy Efficient Pump sets
- Installation of VFD for capacity control
- Hydrophobic Coating

Compressed Air

- Arresting Leakages
- Optimum Generation Pressure
- Application of VFD (Loading/unloading)
- Use of Electrical instead of pneumatic equipment
- Waste Heat Recovery from compressors
- Sensor based auto drain valves
- Heat of Compression Dryer
- Installation of EE Compressor

EE Measures – Boiler & Steam Distribution

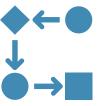
❖ Boiler

- VFD for Feedwater Pump
- Automatic Blowdown and flash steam recovery
- Optimization of Combustion air
- WHR (Economizer/preheater)
- Multi-stage burner
- Optimum insulation
- EE Boiler (>80% eff.)

Steam Distribution

- Selection and maintenance of traps
- Installation of Micro turbine
- Condensate recovery
- Insulation to prevent heat loss
- Arresting Steam leakages
- Design of distribution line

Energy Efficiency – Key Drivers


Leveraging Digitalization for Energy Efficiency

Fostering Innovation – process & technology

Innovative Implementation Models

Leadership and core business strategy
- Benchmarking; ISO 50001 EnMS

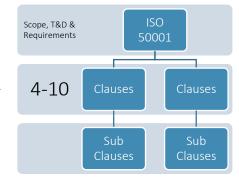
ISO 50001 – Energy Management System

A Guidance/Standard Document for

- Structured approach to management of energy use
- Voluntary global management system standard
- Guide to Improve Energy Performance

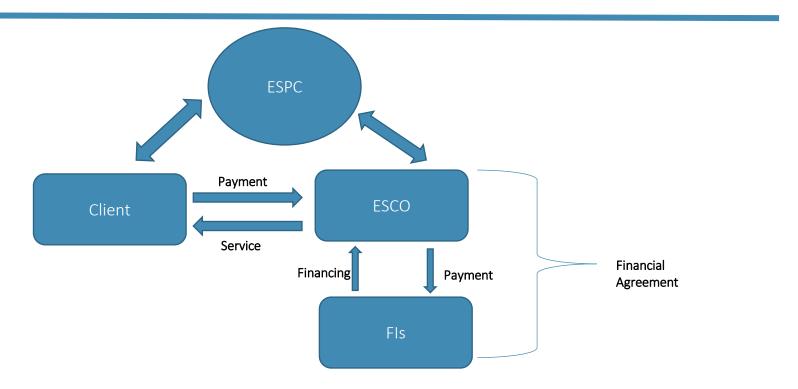
Intent

 To enable organisation to establish system and processes necessary to improve energy performance, thus reduce GHG emissions, environment impacts and COSTS! (measurable improvement in performance)



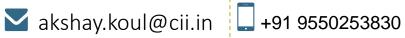
EnMS-Key Aspects

- Top Management Commitment
- Scope and Boundary of EnMS
- Energy Review
- Energy Action plan
- Energy Performance Indicators
- Documentation and reporting
- Design and procurement practices for energy-using equipment and systems
- Processes and personnel
- Training, capacity building and awareness
- Internal Review
- Management Review


Immediate outcome of EnMS

- Establishment of a baseline of energy use
- Conducting review of energy use
- Resource allocation for energy conservation and efficiency activities
- Awareness at levels
- Continual improvement in energy intensity
- Document savings for internal and potentially external use

ESCO – Implementation Model



Contact:

Akshay Koul

CII - Godrej Green Business Centre, India

For any queries related to energy efficiency log in @

http://energy.greenbusinesscentre.com/sup/

For latest updates on energy efficiency please visit

http://energy.greenbusinesscentre.com/

Follow us on:

Confederation of Indian Industry 125 Years: 1895-2020

E.1 While selecting a motor, which of the following is the most suitable evaluation criterion?

Poll Results (single answer required):

Initia Cost	6%
Operation and Maintenance Cost	32%
Life Cycle Cost	62%
None of the above	0%

E.2 What are the unexplored utility applications for Energy Efficiency at your organisation?

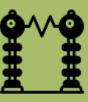
Poll Results:

Compressors	39%
Pumps	10%
Electrical	24%
Boilers and steam systems	17%
None have been explored	10%

E.3 What Model of implementation will you prefer currently?

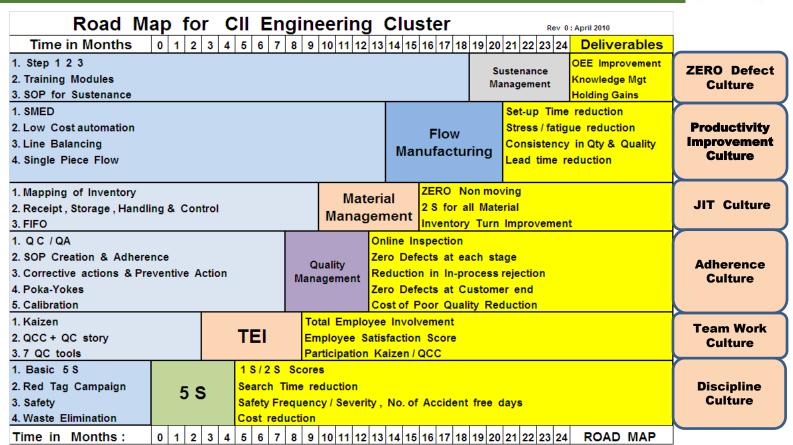
Poll Results (single answer required):

Upfront capital outlay	16%
ESCO-Performance contracting	73%
Rental/Lease Agreement	11%


ENERGY EFFICIENCY IN VALUE CHAIN: OEM PERSPECTIVE

Amol M. Magdum, Associate Chief Manager, Godrej & Boyce Mfg. Co.

ENERGY EFFICIENCY IMPROVEMENT IN SUPPLY CHAIN



The Foundation

First Godrej & Boyce plant to join CII Hybrid Manufacturing Cluster.

Idea of Making Supplier Clusters

Inspired by the Lean Management principles of the Cluster, and the transformation of the Shirwal factory, an idea was mooted.

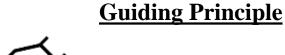
"Why not extend the learnings to our suppliers?

- Mr. Jamshyd N Godrej Chainman & Managing Director, Godrej & Boyce Mfg Co Ltd.

Uniqueness & Guiding Principles

Uniqueness

No external consultants hired


A separate vertical created – Supplier Improvement Team

Implementation of Lean Manufacturing Techniques at SME plants

Aimed at up gradation of SMEs

Treat suppliers as extension of our own manufacturing facilities

Share & disseminate the learning's from Godrej Operational Excellence

Cluster philosophy

Coming Together....

Learning Together....

Practicing Together....

Progressing Together....

Organisation Structure

Godrej Team

Head Sourcing

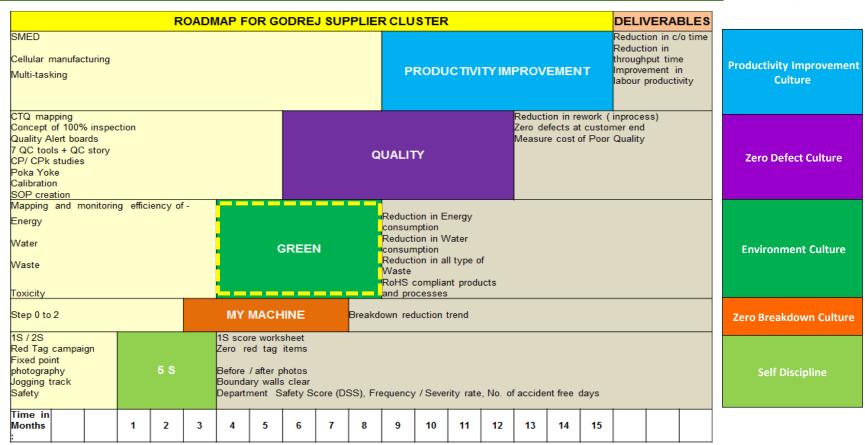
head Responsible for

driving the cluster

Plant manufacturing head to advice & guide cluster on technical issues Supplier
Improvement Team
Gives input &
trainings during
weekly visits along
with domain experts

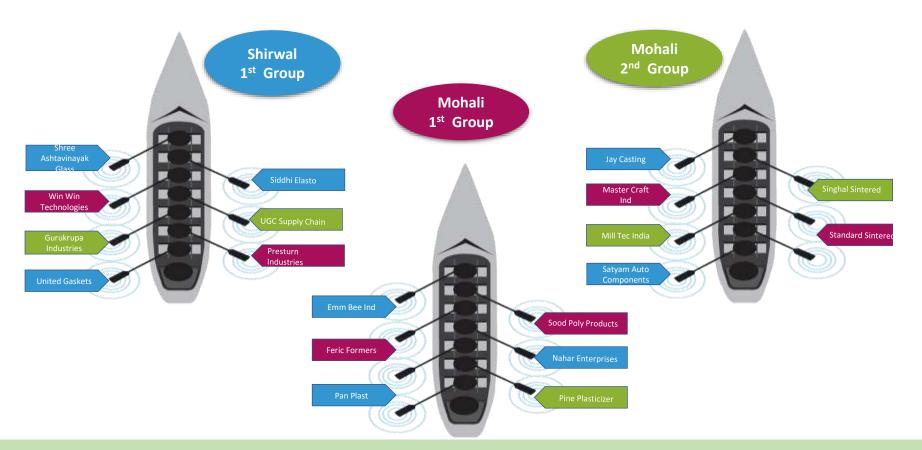
Co-owner
Works along
with the SIT &
review the
progress of each
supplier

Supplier Team


Top Authority of Supplier To drive cluster at supplier's plant

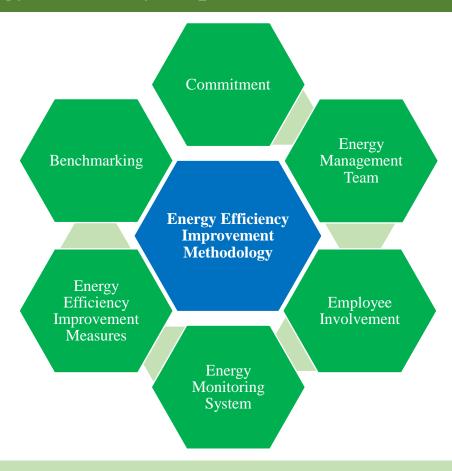
Top Authority of Supplier To interact with Godrej Team for implementation of cluster leanings

Supplier Cluster Roadmap



Balancing manufacturing growth and a clean environment.

First Cluster Roll Out



1st Cluster roll out – Jun'13

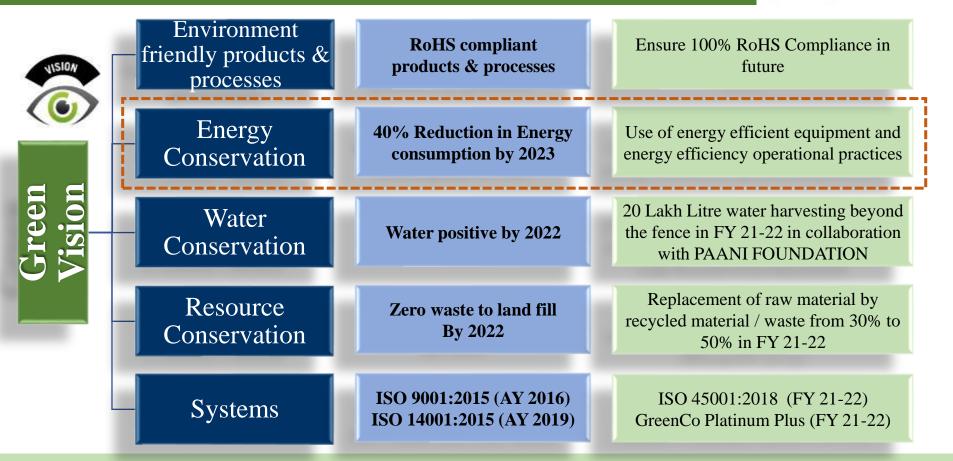
Methodology – Energy Efficiency Improvement

Commitment

Vision

Policy

Target Setting


Financial Allocation

Review Mechanism

Green Vision

Vision communicates organization's value and its commitment to achieving its goals

Green Policy

DESHMUKH UDYOG PRIVATE LIMITED

GREEN POLICY

We at Deshmukh Udyog. Pvt. Ltd. are committed to conserve all key resources such as energy water, oil and other raw material by optimizing there use and continually improve our environmental performance by using renewable source of energy pollution preventing process and better waste disposal and practices recycling of material without compromising on high accelerated growth. To continue our efforts on this direction we are committed ourselves to:

- Comply environmental legislation and codes of practices.
- Follow 3R Reduce, reuse, and recycle for all natural resource.
- Follow continual improvement principle with regards to air, from our premises and reduce it impacts on environment and local community.
- Purchases products and services that do the least damage to the environment.
- We shall create and enhance awareness on sound environmental practices amongst all our employees, suppliers, contractors and society.

This policy has been communicated and made assessable to everyone in our organisation and will be made available to customer suppliers, business associates and to other interested parties on request.

Rev No.: 00

Uday Vaman Deshmukh

Date: 26.06.2019

Director

Committed to conserve all key resources such as <u>ENERGY</u>, water and other raw materials by optimizing their use

Policy define the goals and provide guidance about how to achieve objectives

Setting goals is the first step in turning invisible into visible

Action Plan & Financial Allocation

	Present Consumption (FY 19-20)	Short Term (FY 20-21)	Mid Term (FY 21-22)	Long Term (FY 22-23)
SEC Target (kWh/MT)	108	102 (5%)	97 (10%)	92 (15%)

SN	Initiative	Year of Implementation	Benefit (kWh/year)	Investment (Rs. Lacs)
1	Use of energy efficient motors for all machines	2022	18700	2.5
2	Installation of energy monitoring software for monitoring specific energy consumption for all electrical equipments of machines	2021		1.5
3	Purchase bolt for new auto 4 stage bolt former for reduce the energy	2023	12000	22
4	Up-gradation of Hardening Oven	2021	2400	0.60
5	Upgrade the plating plant	2022	2400	5.5
6	Installation of Screw compressor AC-CD 7.5	2022	1500	5.5

Resourcing waiting for ideas, not ideas waiting for resources

Review Mechanism

MRM – Supplier End

- Review of section-wise energy consumption
- Analysis of daily energy consumption for high energy consumption machines
- Discuss action plan on deviations
- Ideation for new energy conservation projects
- Review status of work in progress projects

MRM – Supplier Cluster Program

Agenda

Welcome Remarks by Host Company

Performance review of Host Company

Gemba visit

Observation feedback using photographs

Performance review of other participating cluster members

Finalisation of next MRM, venue and date.

Training on next module of Cluster Roadmap

Closing Remarks by GAD Management

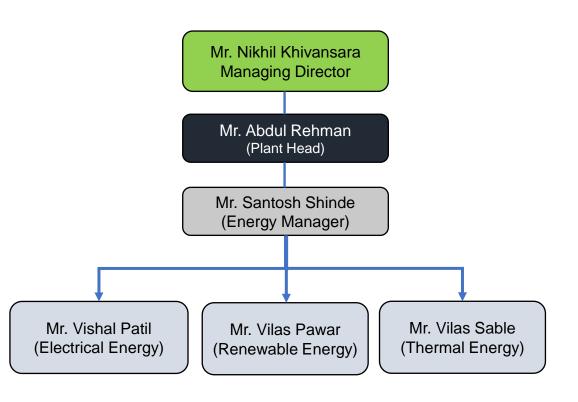
Performance monitoring by Top Management

Total Employee Involvement

TEI helps builds a work culture of collaborative workforce for better growth & success

Training & Capacity Building

Training & Capacity Building



Energy Management Team

Role & Responsibilities

Director & Plant Head –

- Review & approve energy conservation projects.
- Create different platforms for spreading awareness on energy conservation amongst all employees.

Energy Manager –

- ✓ Data analysis.
- Identification, feasibility study, payback calculation of energy conservation projects.
- Getting approval for new projects from the management.

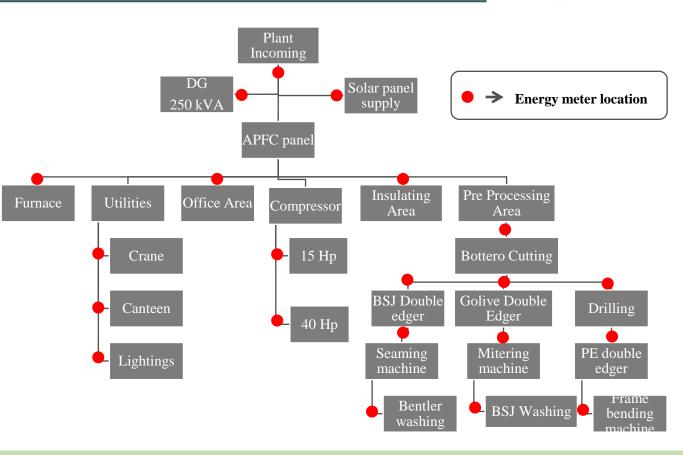
Energy Management Cell –

- Creating energy conservation awareness in the company.
- Sharing of ideas between various departments.
- ✓ Implementation of energy saving projects.

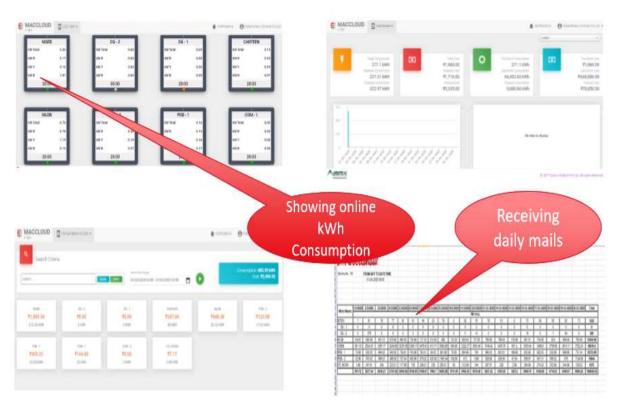
Energy Monitoring System

Energy Metering

Daily Variance Analysis

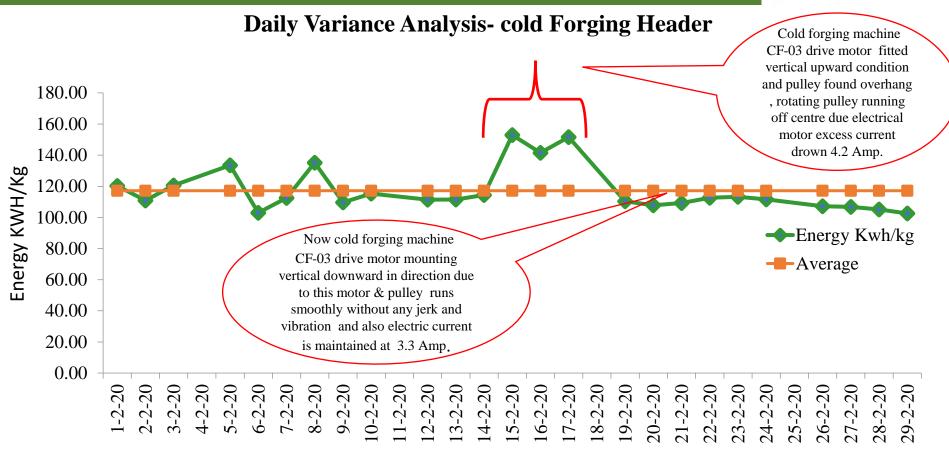

Corrective Action on Deviation

Energy Metering



Online Energy Monitoring

Real Time Energy Monitoring Software


Provides data

- ✓ kWh
- ✓ Voltage
- ✓ Current
- ✓ Consumption
- ✓ Department wise Consumption
- ✓ Machine wise Consumption
- ✓ Daily reports to all energy members

Cloud based system with storage space up to 3 years

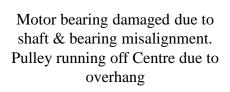
Daily Variance Analysis

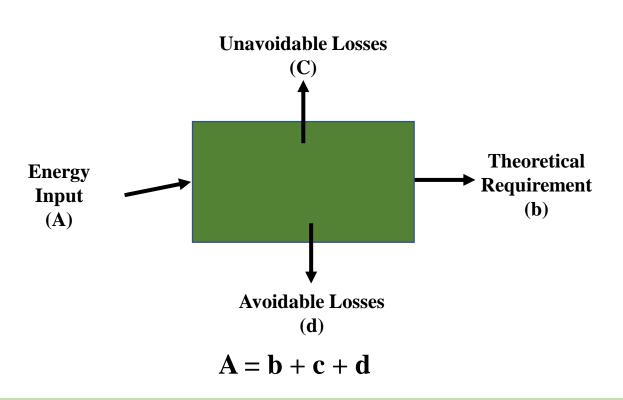
Corrective Action on Deviation

Analysis of Deviation

Problem Status	High energy consumption in Cold forging Header machine CF-03		
Why 1	High energy consumption in 16 th to 18 th Feb-20		
Why 2	Machine motor was drawing excess current (Required 3 to 3.2 amp & actual 4,2 amp)		
Why 3	Pulley running off centre & overhang		
Why 4	Motor bearing wear out due to shaft bend		
Route cause	Motor bearing wear out due to shaft bend		

Corrective Action on Deviation





- Shaft & bearing alignment corrected & motor bearing changed
- Frequency set for shaft alignment (Once in year)
- Drive motor & pulley location charged to avoid overhang

Macro Level Methodology

Focus should be on

- Quantify the losses
- To concentrate on avoidable
 - losses
- Identify ways and means for reduction
- Implementation

Lighting & Electrical Systems

- Maintaining power factor close to unity or unity
- Measuring efficiencies of motor and replacement of old inefficient motors
- Maximum usage of daylight (transparent sheets / sky lights)
- Lux mapping across the plant level and provide exact lighting as per requirement
- Lowering the heights of luminaires wherever possible

Compressed Air

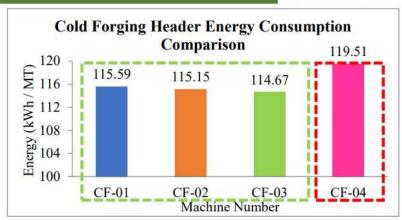
- Monitoring of air leakages and taking corrective actions
- Segregation of pressure lines
- Aluminium piping for compressed air network
- Installation of VFDs
- Use of transvector nozzles
- ❖ Saving potential 50%

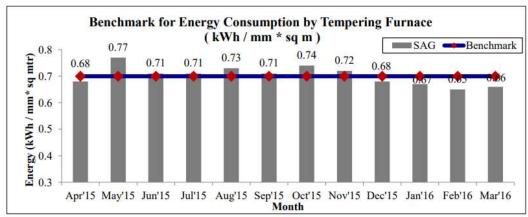
Pumps, Fans, Blowers

- Arresting leakages in water pipe lines and air ducts
- Monitoring of efficiencies
- Installation of VFDs
- Use of coatings to reduce friction in pumps and increase efficiency

Boiler, Furnaces

- Monitor efficiencies
- Monitoring condition of insulations periodically and take corrective actions accordingly
- Use of insulation paints wherever applicable
- Replacement of old inefficient boiler with latest energy efficient boiler





Benchmarking

- ➤ Source of information
- Inter plant comparison within the Group
 - Process Benchmarking
 - Machine Benchmarking
- Comparison with publicly available data
- Sustainability Reports
- Awards Presentations
- Data from Sectoral Associations

** Source - Saint Gobain India Pvt. Ltd

GreenCo for SME Supply Partners

SME GreenCo Rollout – GAD, Shirwal

GreenCo for SMEs – Roll out at GAD Shirwal on 16th Feb'16

SN	Supplier Name	GreenCo Rating
1	Shree Ashtavinayak Glass Pvt Ltd	Platinum
2	Khutale Engineering Pvt Ltd	Platinum
3	Ajay Poly Pvt Ltd	Gold

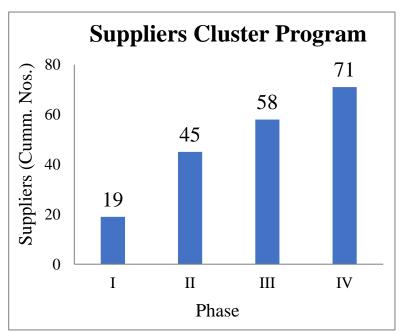
Approach

Registering suppliers for GreenCo Certification

Supplier Training on GreenCo Rating
System by CII

Supplier Training on various module of GreenCo by Godrej

Supplier Handholding for GreenCo certification preparation by CII & Godrej



Supplier Site Assessment by CII

1st in India to launch GreenCo for SME supply partners

Scaling Up

Benefits

Supplier

29% reduction in energy consumption

37% reduction in fresh water consumption

31% reduction in waste

32% reduction in GHG emissions

Godrej Appliances

84% of local buy from GreenCo certified suppliers

100% RoHS complied outsourced parts / products

47% reduction in incoming packaging waste

17% reduction in GHG emissions from transportation

29% reduction in energy consumption in value chain

Thank You....

OPPORTUNITIES FROM ENERGY EFFICICNEY: MSME PERSPECTIVE

Suresh Manoharan, Executive Director, Best Colour Solutions

Best Colour Solutions India Pvt Ltd

- Textile dye house located in SIPCOT, Perundurai, Erode District, Tamil Nadu.
- Dyeing capacity: 6,500 kgs per day
- Operation since: Jan 2008
- Annual Turnover: Rs.25 Crore
- Category: MSME Small

Fashion Industry

Without textile dyeing, there is no value addition in the textile supply chain.

Mr. Suresh Manoharan, Best Colour Solutions

Apprehensions about Textile Dyeing

• High water consumption, resulting in huge effluent generation.

High energy consumption.

Zero Liquid Discharge Scheme (ZLDS)

 Under ZLDS, there is no discharge of (liquid) effluent, neither outside the factory nor inside the factory.

 Entire effluent generated is treated, recovered and reused.

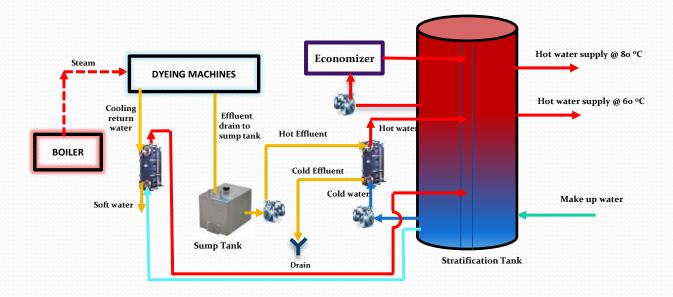
Only 10% of fresh water is required for top-up.

Energy Consumption in Production

- Dyeing requires heating fresh water to high temperatures (60° c to 120° c)
- At the same time, dyeing effluents are drained at hot temperatures (60° c to 80° c)

Hence, planned on implementing: "Heat Recovery System"

Solution Overview


Integrated heating solution for dyeing process waste heat recovery from different sources:

- Energy recovery from wastewater in dyeing process
- Energy recovery from cooling process in dyeing machines
- Energy recovery from boiler flue gas

Vendor: Bosch Limited

Solution Overview

Vendor: Bosch Limited

Energy Efficiency Solution

Vendor: Bosch Limited

Cost Savings Calculation

Particulars	13-07-2020 to 19-07-2020	20-07-2020 to 26-07-2020	27-07-2020 to 02-08-2020	03-08-2020 to 09-08-2020
	With Bosch	Without Bosch	With Bosch	Without Bosch
Total Steam Production (3TPH+2TPH) (Kg)	3,31,582	3,15,035	3,20,979	3,45,320
Total Wood Consumed (3TPH+2TPH) (Kg)	1,05,289	1,00,469	1,01,987	1,11,092
Specific fuel Cosumption (Kg)	3.1493	3.14	3.1473	3.11
Steam Consumed for Processing (Kg)	1,22,775	1,56,415	1,20,721	1,51,227
Theoritical Wood Consumed for Processing (Kg)	38,985	49,883	38,358	48,651
Normalized Fabric Processed Quantity (Kg)	37,145	36,740	37,466	34,929
Wood Consumed per Kg of fabric processed (Kg)	1.05	1.36	1.02	1.39
Wood Saving %	22.70%		26.50%	

Economics

Avg wood consumption for processing = 7,000 kgs

Fuel savings = 24%

Wood savings per day = 1,680 kgs

= 1,680 * Rs.4.90

= Rs. 8,200

Annual Savings

= 290 days * Rs. 8,200

= Rs. 24 Lakhs

Investment

= **Rs. 85** Lakhs

Return of Investment: 3.5 years

Benefits of Implementation

- Reduced steam consumption resulting in 24% fuel savings.
- Lower temperature discharge of effluent to ETP reduces the effluent treatment cost.
- Hot water direct consumption in the machines results in reduction of steam peak load from the boiler. The elimination of pressure fluctuation improves the boiler performance.
- One of two existing boiler moved to standby mode.

CII GreenCo Certification

In the process of obtaining CII GreenCo Certification through CII - Sohrabji Godrej Green Business Centre, Hyderabad.

Shortcomings Observed in MSMEs

Not investing in utility monitoring equipment.

Steam Flow Meters:

- 3 TPH Boiler
- 2 TPH Boiler
- Process House
- ETP Multiple Effect Evaporator (MEE)
- ETP Agitated Thin Film Dryer (ATFD)

Weighing Scales:

- 3 TPH Boiler Fuel Feeding
- 2 TPH Boiler Fuel Feeding

Energy Meters:

- 3 TPH Boiler
- 2 TPH Boiler
- BOSCH Heat Recovery System

Shortcomings Observed in MSMEs

_	_						Utility Report for Boiler Till 16/2/2018 (For the Month of						
Item	Description	Avg	Total	1		2		3	4	5	6	7	
STEAM BOILER (2 TPH)	Running Hrs	23:53:00	382:02:00	24:00:00	27	:59:00	23:5	8:00	24:00:00	23:59:00	23:59:00	23:51:00	
	FireWood Consumption	8185.875	130974.000	9676.000	88	3.000	8392	000	8653.000	8921.000	8959.000	▲8680.000	
	Electricity Unit	81.379	1302.057	86.044		38.927	86	847	86.779	77.195	82.107	84.929	
	Steam Generated	28991.000	463856.000	32258.000	307	59.000	28867	000	29622.000	20060.000	31036.000	28658.000	
	FireWood Cons/Hour	342.951	342.95	403.167	3	9.965	350	153	360.542	371.967	373.551	363.941	
	Electricity Units/Hour	3.408	3.41	3.585		3.708	3	524	3.616	3.219	3.423	3.561	
	Steam Generated/Hour	1214.177	1214.18	1344.083	12	32.516	1204	\$65	1234.250	1253.370	1294.065	1201.593	
	FireWood Cost	28778.733	460459.720	30963.200	283	33.600	26854	100	27689.600	8547.200	28668.800	27776.000	
	Electricity Cost	813.790	13020.570	860.440	8	39.270	868	170	867.790	771.950	821.070	849.290	
	Chemical Cost	285.598	4569,566	312.320	3	04.089	304)89	304.089	304.089	304.089	304.089	
	Maintanance Cost												
	Total Cost	29878.12	478049.86	32135.96	29	586.96	2802	.96	28861.48	29623.24	29793.96	28929.38	
	Cost/Unit Of Steam	1.03	1.03	1.00		0.96	0	97	0.97	0.99	0.96	1.01	

Vendor: Ideatec Softwares India Pvt Ltd

Shortcomings Observed in MSMEs

Not investing in IoT based real time data acquisitions and analytics.

Vendor: Ideatec Softwares India Pvt Ltd

Mr. Suresh Manoharan, Best Colour Solutions

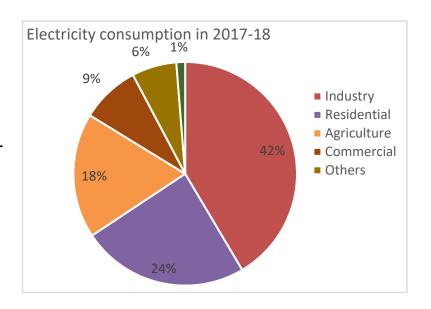
Thanking You

Mr. Suresh Manoharan Executive Director Best Colour Solutions India Pvt Ltd www.linkedin.com/in/suresh-manoharan

ENERGY EFFICIENCY IN MSMEs: SUCCESS STORIES

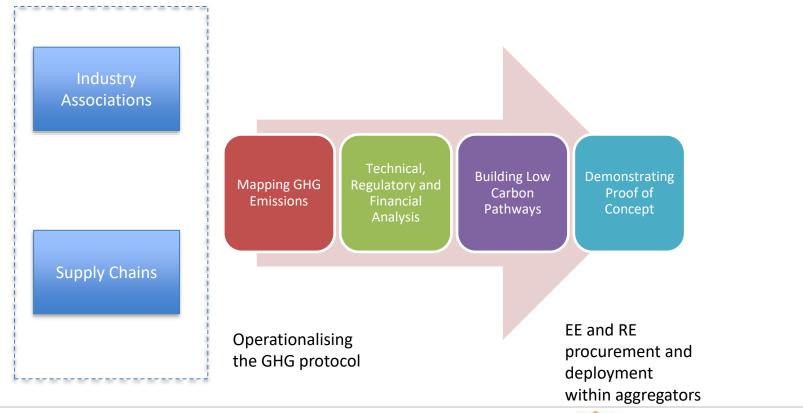
Kajol, Manager, Energy Group, WRI India

E.4 Have you been a part of any aggregation model or heard about this in the past?


Poll Results (single answer required):

Yes	22%
No	78%

WHY IS DEMAND AGGREGATION IMPORTANT?


- 63.3 million MSMEs. Of which 31% are manufacturing units; account for 25% of the industrial sector's energy consumption.
- Large companies have more or less figured out avenues for clean energy interventions
 - Workable avenues for MSMEs
- Key argument for aggregation
 - economies of scale

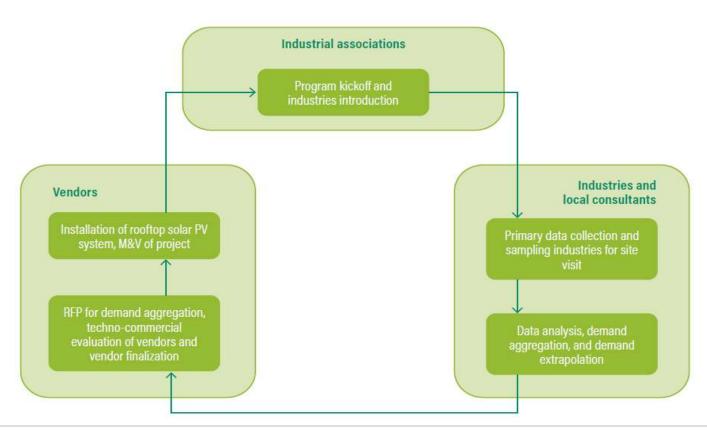
ANCHOR PARTNERS AND LOCAL PARTNERS

	Naroda	Aurangabad	Supply Chain
Anchor Partner	Naroda Industries Association (NIA)	Marathwada Association of Small Scale Industries and Agriculture (MASSIA)	H&M
Local Partner	Gujarat Cleaner Production Center (GCPC)	Eco Energy Management System (EEMS)	

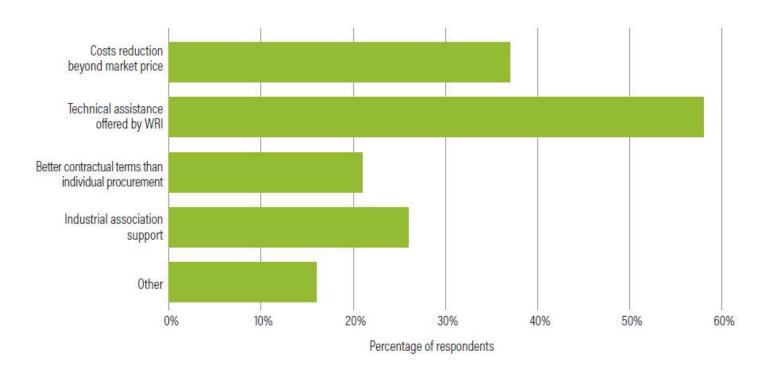
METHODOLOGY

SNAPSHOT OF FINDINGS

NAME	NARODA INDUSTRIES ASSOCIATION	MARATHWADA ASSOCIATION OF SMALL-SCALE INDUSTRIES	SUPPLY CHAIN UNITS OF H&M
No. of units studied	70 units	75 units	31 units
Туре	Chemical Cluster	Automobile cluster	Garment manufactures
Primary Fuel	Piped Natural Gas (PNG) and wood	Grid based electricity	Grid and diesel-based electricity
Secondary Fuel	Grid based electricity	LPG and furnace oil.	Coal and oil
Baseline GHG emission (tonnes of CO ₂ eq.)	56592.5	15150.13	421985
Emission potential	Scope 1 emission was higher than scope 2 emission	Scope 2 emission was higher than Scope 1 emission	Scope 1 emission was higher than Scope 2 emission
Potential reduction in emissions (tonnes of CO ₂ eq.)*#	24,000*	24,278	6000



WHILE NOT SUCCESSFUL ON EE, THERE WERE LEARNINGS


- Ownership and control over the constituent industries are a key determinant in factors like data collection
- Location of units plays a great role when it comes to RE interventions

CASE STUDY: ROOFTOP SOLAR – NARODA AND AURANGABAD

KEY STAKEHOLDERS AND THEIR ROLE

MOTIVATIONS TO JOIN THE DEMAND AGGREGATION

INFLUENCING FACTOR

- The following factors are critical to the successful implementation of the demand aggregation for solar PV systems project:
 - Technical Awareness
 - Securing the support of and working closely with the industries and association
 - Transparent vendor selection process
 - Presence of a local partner
 - Infrastructure and logistics challenge
 - State regulatory commission policy

E.5 If you have to take-up demand aggregation in you cluster, what would be the key challenges you may face?

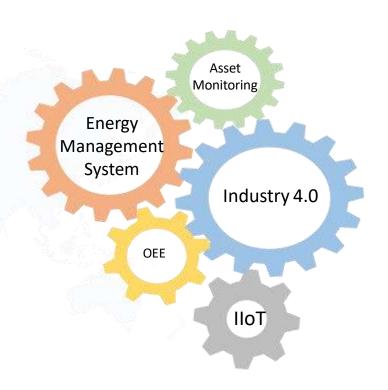
Poll Results (single answer required):

Technical know-how	20%
Bringing industries together	51%
Pricing (low tariff, high installation)	23%
Lack of interest	6%

THANK YOU

Question and Answer Session I

IoT/AI SOLUTIONS FOR ENERGY EFFICIENCY


Vinit Kulkarni, Co-Founder, Greenovative Energy Solutions

Introduction

- Equips the organizations with <u>technology & data analytics</u>
- Asist to <u>thrive sustainability</u> and <u>reduce</u>
 <u>Opex</u>
- At least top 3 clients from <u>every major</u>
 <u>sector</u> with Successfully deployed at over
 <u>200+ facilities</u> across India & MEA region

Value Proposition & Underlying Magic

"uncovers Energy Intelligence through data and technology helping customers consume less energy, improve system utilization, increase reliability & generate insights to help optimize resources & achieve sustainability"

Proudly Serving At...

AUTOMOBILES

PHARMA

STEEL

NOVARTIS

FOOD &
BEVERAGES

Proudly Serving At...

FACILITIES & INSTITUTES

CEMENT &

CHEMICALS, PAINTS EXPLOSIVES

TYRES & PLASTICS

HEAVY INDUSTRIES & OTHERS

Key Metrics & Recognition

Diagnosing **1 Billion+** energy unit every hour

Maintenance Cost Reduced by **6%** (\$0.12 Mn*)

Amplified equipment uptime by **14%**

Decrease in energy consumption by **12-15%** (\$5 Mn*)

Maintaining reports complied with **ISO 50001**

Increased Productivity
Throughout up to 8%

Member of MCCIA
Assisting IMC in Egypt

Recognized member of Department of Industrial Policy and Promotion (DIPP) India

- Smart Startup of the year 2020 by India Smart Grid
 Forum For power quality at EV charging station
- ❖ Winner of BIZ Arena by **Proctor & Gamble** 2019

- Winner Emergx "Highway to a 100 Unicorns" –Microsoft for Startups 2020
- Winner of Maharashtra Start Up Week 2018, India

Offerings

Energy Management System(EMS)

- GreenErgy: Real time Energy data monitoring software solution
- •Improves system utilization
- Increases reliability
- Predicts performance of electrical & mechanical systems

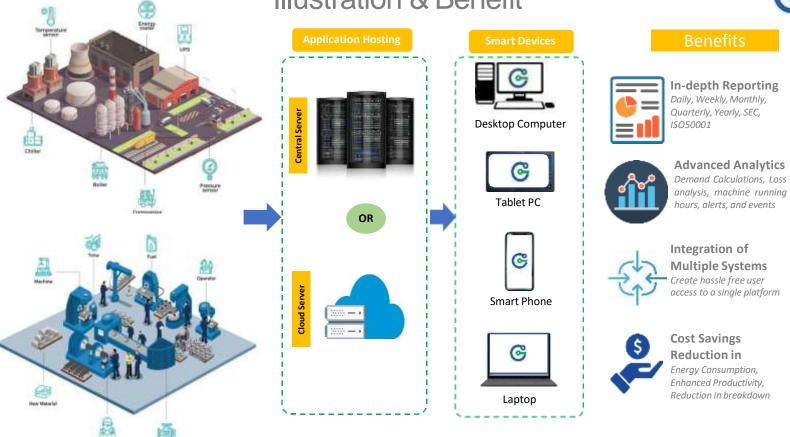
Overall Equipment Efficiency(OEE)

- •Improves manufacturing processes
- •Identifies losses
- Measures and improves performance of machines/operators

Asset Monitoring

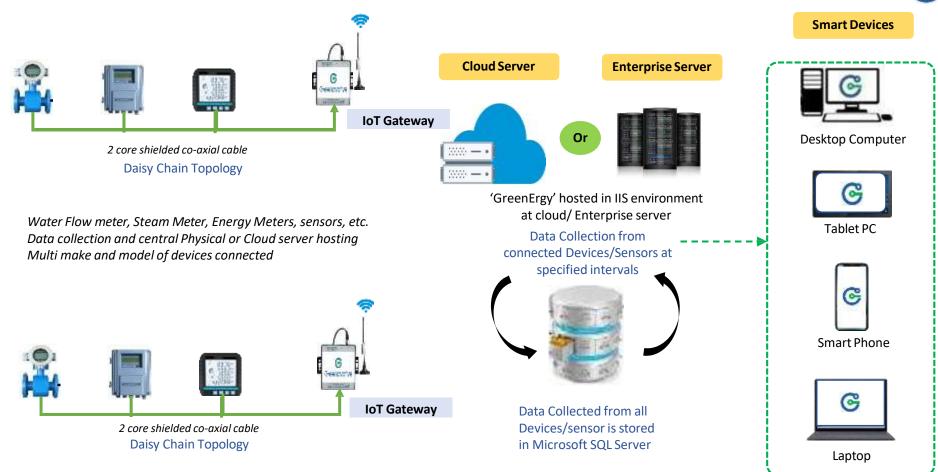
- Maximizes ROI on CAPEX
- Ensures uptime of assets
- Ensures reliability and safety of assets
- Empowers proactive actions for system failures

Smart Grid

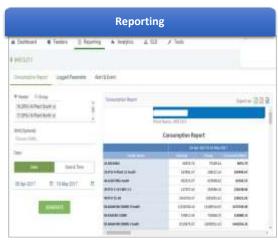

•Identifies areas of wastage T&D

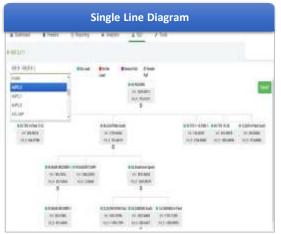
Losses

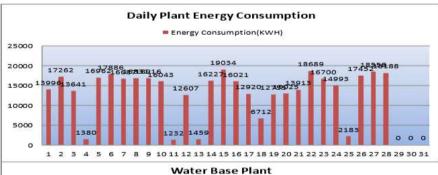
- Transformer Monitoring & ticketing
- Power Quality at EV charging Stations
- Analytics of electrical patterns to improve grid stability

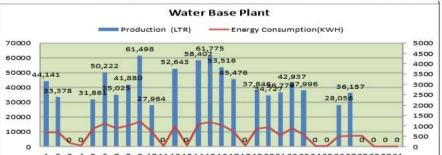

Illustration & Benefit

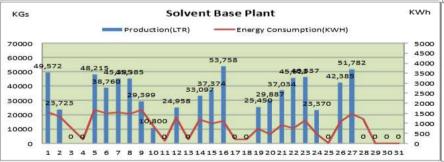
EMS Architecture On Cloud / Enterprise Server

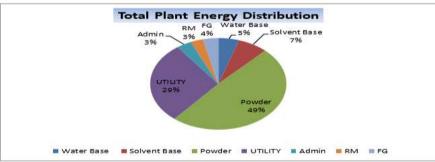

Sample Screens https://www.mysmartems.com/

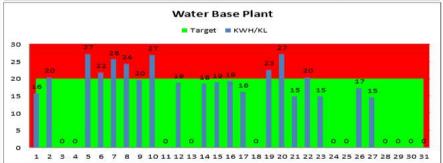


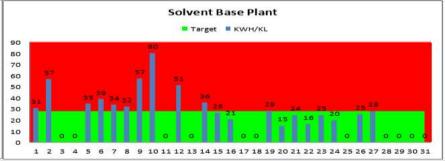

Specific Energy Consumption Report

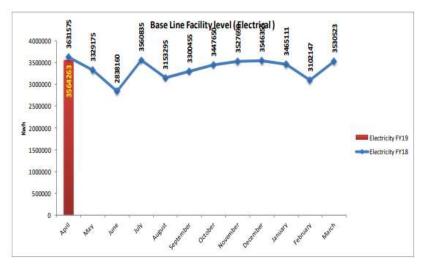


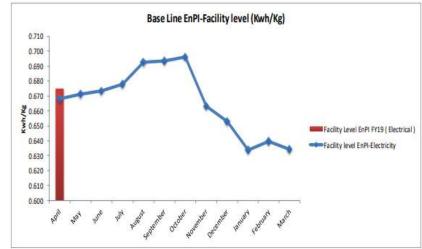

Date		Product 1 (KL)			Product 2 (KGS)			Product 3 (KL)		UTILITY	Total Manufacturing	Admin	RM	FG	PLANT	PLANT
	Energy Consumption(KWH)	Production (LTR)	KWH/KL	Energy Consumption(KW H)	Production (KGS)	kwh/kgs	KWH)	Production(LTR)		Energy Consumption (KWH)	кwн	кwн	кwн	кwн	Energy Consumptio n(KWH)	
1	693	44141	16	6003	13470	446		49572	31	3892	12122	468	429	526		
2	678	33378	20	8034	24365	330	1345	23723	57	5069	15125	521	423	510	17262	212
3	174	0	0	6857	19725	348		0	0	4120	11922	433	388	322	13641	
4	48	0	0	222	0	0	186	0	0	13	468	295	137	246		
5	864	31861	27	7594	23190	327	1673	48215	35	4702	14834	501	444	505	16962	164
6	1097	50222	22	8238	26835	307	1505	38760	39	4878	15718	494	495	584	17886	
7	895	35025	26	7706	25420	303	1533	45385	34	4321	14455	466	463	607	16687	158
8	1015	41880	24	7601	21880	347	1464	45385	32	4560	14639	493	455	533	16831	154
9	1204	61498	20	7678	23120	332	1683	29399	57	4444	15009	449	390	525	16916	148
10	749	27964	27	8472	26470	320	869	10800	80	4220	14310	382	368	424	16043	246
11	34	0	0	266	0	0	126	0	0	85	511	259	129	203	1232	0
12	988	52643	19	5567	13020	428	1284	24958	51	4101	11941	448	414	514	12607	139
13	50	0	0	252	0	0	183	0	0	34	519	329	141	257	1459	
14	1079	58407	18	7169	21305	336		33097	36	4569	14001	484	459	544	16227	
15	1170	61775	19	9659	29110	332	988	37374	26	5017	16834	520	463	529	19034	148
16	1032	53516	19	7238	19425	373		53758	21	4427	13807	517	461	583	16021	
17	733	45476	16	6104	21140	289	200	0	0	4359	11397	401	372	296	12920	194
18	42	0	0	3933	13590	289	183	0	0	1983	6141	187	153	148	6712	494
19	855	37846	23	6550	26740	245	728	25450	29	2861	10994	480	425	480	12755	142
20	940	34727	27	7150	28265	253	444	29887	15	2644	11178	510	390	519	13025	140
21	544	36776	15	6874	17680	389	907	37034	24	4199	12524	463	407	519	13913	152
22	875	42937	20	9044	26620	340	753	45623	16	5231	15903	548	528	626	18689	162
23	563	37996	15	7401	21970	337	1137	46337	25	4507	13608	636	467	586	16700	157
24	17	0	0	7413	18430	402	462	23370	20	4546	12438	511	433	485	14993	359
25	17	0	0	357	0	0	20	0	0	310	703	417	153	302	2183	0
26	485	28056	17	8205	25175	326	1076	42385	25	4758	14524	591	477	565	17452	183
27	528	36157	15	8365	25695	326	1457	51782	28	4958	15307	590	485	582	18558	163
28	528	0	0	8038	0	0	1201	0	0	5241	15009	516	544	639	18188	0
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	17897	852,281		177,990	512,640		26006	742,294		104050	325,943	12,912	10,896	13,158	0	
	Water Base Pair	nt					Solvent			UTILITY						


Customized Dashboard

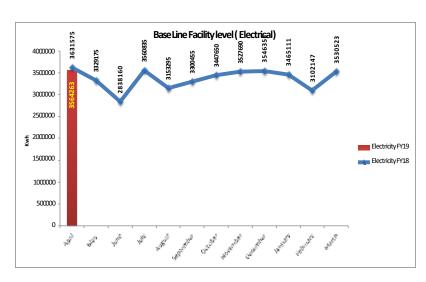


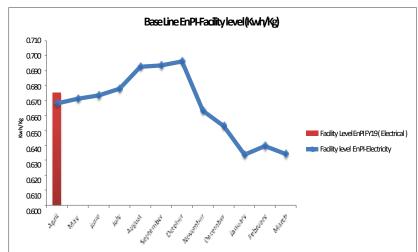






ENPI Report


Fuel	April	May	June	July	August	September	October	November	December	January	February	March
Electricity FY17	3579450	3625745	3783423	3882875	3589065	3432105	3406805	3467100	3568515	3499694	3188986	3679129
Electricity FY18	3631575	3329175	2838160	3560835	3153295	3300455	3447650	3527690	3546355	3465111	3102147	3530523
Electricity FY19	3564263		,			9 - 19			S .			
Facility level EnPI-Electricity	0.668	0.671	0.673	0.678	0.693	0.693	0.696	0.663	0.653	0.634	0.639	0.634
Facility Level EnPI FY18 (Electrical)	0.649	0.668	0.727	0.689	0.722	0.689	0.697	0.671	0.674	0.658	0.653	0.647
Facility Level EnPI FY19 (Electrical)	0.675											
Brequette			,						8 3			
Facility level EnPI (Brequette)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Facility level EnPI (FO)	5281480					1						
FO EnPI	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Production FY17	5358420	5403367	5619523	5729508	5181370	4949110	4893280	5228380	5464564	5520760	4986800	5800818
Production FY18	5593793	4984620	3906000	5165220	4368413	4791500	4944872	5260644	5262498	5267751	4747470	5458657
Production FY19	5281480				- 111				11 01			



ENPI Report

#uncoverEnergyIntelligence

Greenovative Energy Pvt. Ltd.

Plot No. 20, Bhagwati Nagar, Behind Croma Store, Baner, Pune-411045, Maharashtra, India

Ph.:020 2729 5000, **E**:info@greenovative.com

www.greenovative.com

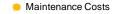
ENERGY EFFICIENCY IN COMPRESSED AIR SYSTEMS

Hidhay K., Managing Director, Systel Group of Companies

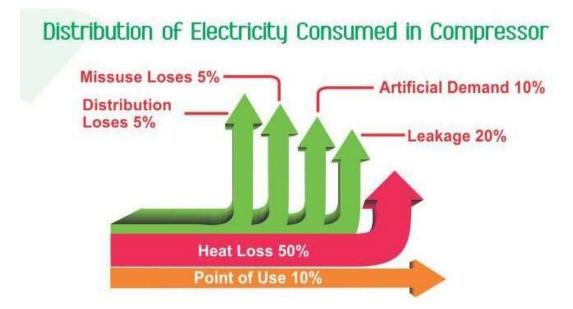
Systel's Industry 5.0 Solutions for Compressed Air Systems

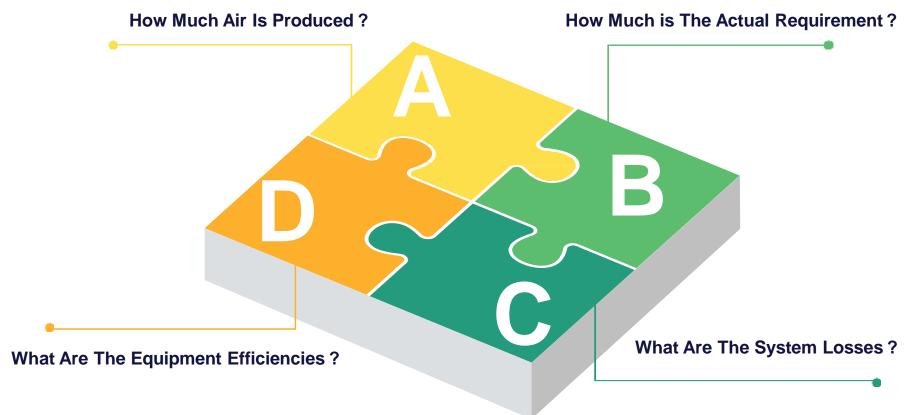
ABOUT US

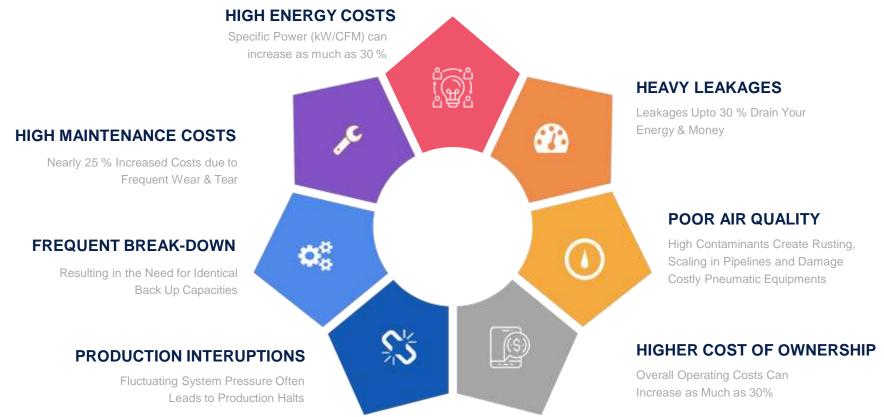
An Indo Danish Venture



Annual Impact Of A 100 HP Compressors







Compressed Air Puzzles?

Result of In-Efficiencies

Rise Above

Ownership Costs

Save Upto 40 % in Reduced Cost of Ownership

Efficiency

Industry 5.0 Can Help You Achieve Maximum Operating Efficiencies of Your Compressed Air Equipments

Emissions

Every 1 H.P of Compressor Capacity Annually Emits 1 Ton of Green House Gas Emissions

Losses

Inefficient Systems Often Waste As Much As 30 - 50 % of Energy

Low Cost of Ownership

High Operational Efficiency

High Green House Gas Emissions

Energy & Cost Wastages

Systematic & Smart Improvements

Deploying Industry 5.0 for Compressed Air Systems

From Wastefulness to Wastelessness



What is Industry 5.0 ?

The Term Industry 5.0 Refers to People Working Alongside Smart Machines.

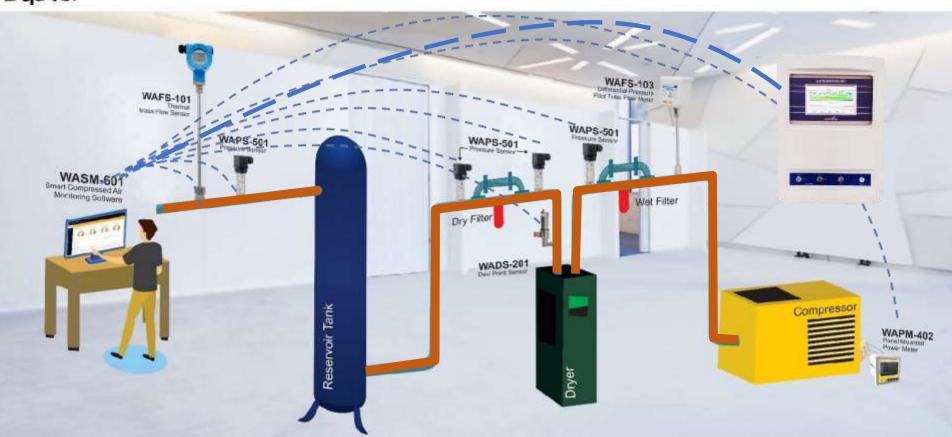
It's About Smart Technology Helping Humans
Work Better and Faster by Leveraging Advanced
Techniques Like the Internet of Things (IoT) and
Big Data.

It Adds a Personal Human Touch to the Industry
4.0 Pillars of Automation and Efficiency.

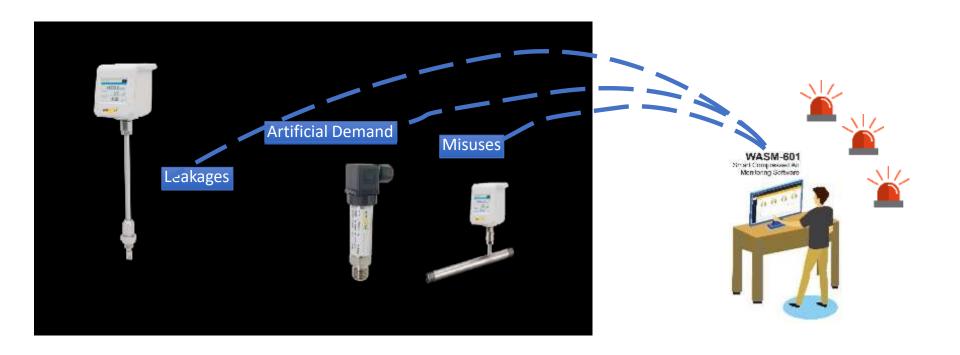
Advancing from Industry 4.0 to Industry 5.0

- The Objective of Industry 4.0 Is to Interconnect Machines, Processes and Systems for Maximum Performance Optimization.
- Industry 5.0 Takes Such Efficiency and Productivity a Step Further.
- It's About Refining the Collaborative Interactions Between Humans and Machines.

Industry 5.0 - Manufacturing World's **Event Horizon**


Industry 5.0 Is About Finding the Optimal Balance of Efficiency and Productivity.

The Progress of Industry 5.0 Is Unavoidable.


Baselining Operating Data's With Smart Sensors

Demand Side Optimization

Define Goals

kW/CFM

Overall System Efficiency Should not Exceed 0.17 kW / CFM

PRESSURE DEW POINT

Should Not Exceed 3 °CTD for Refrigerant Dryers and - 50 °CTD for Dessicant Dryers

PRESSURE DROP

Should Not Exceed 0.5 Bar from Wet Receiver to the Actual Point of Use

LEAKAGES

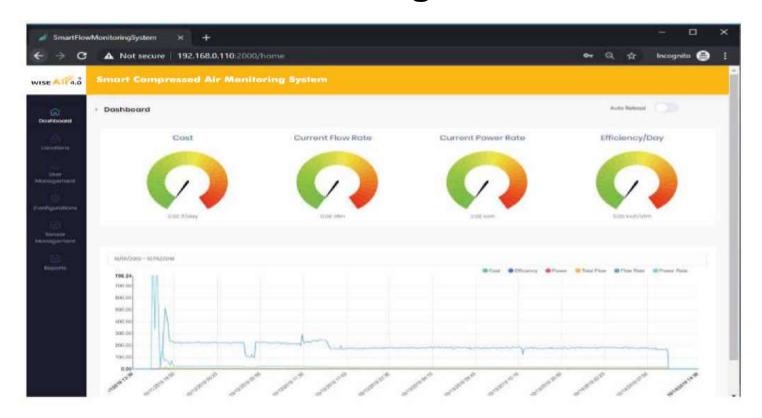
Maintain Leakages at Less Than 5 % of Generation

SYSTEM PRESSURE

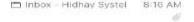
Maintain Dual Pressure Zones for High & Low Pressure Requirements

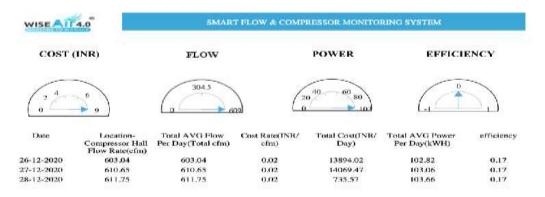
Implementing Corrections

Implementing Corrections



Smart Tracking of KPIs


Automated Reports


WiseAir Smart Compressed Air Monitoring System

Consumption Report for Dec 27th 2020, 8:16:08 +0530 to Dec 28th 2020, 8:15:00 +0530

To: Hidhay K.

Project Objectives

Energy Savings - 17.5 %

Carbon Reductions - 3162 Tons

Equivalent to Planting of 15811 Fully Grown Trees

Rs 2.32 Crores Cost Savings

Install Monitoring

Measure Flow, Power, Pressure, Dew Point and System Efficiency

Define Operating Baselines

Set Baseline and Define Goals for Improvement

Take Corrective Actions

Implement Leak Repairs, Eliminate Artificial Demand / Misuses & Improve Supply Efficiency

Realise Energy Savings & Reduce Carbon Footprints

Achieve Annual Energy Savings of Upto 488 kWH & Reduce Carbon Foot Prints By 3162 Tons / (Equivalent of 15811 Trees Required to Offset these Emissions)

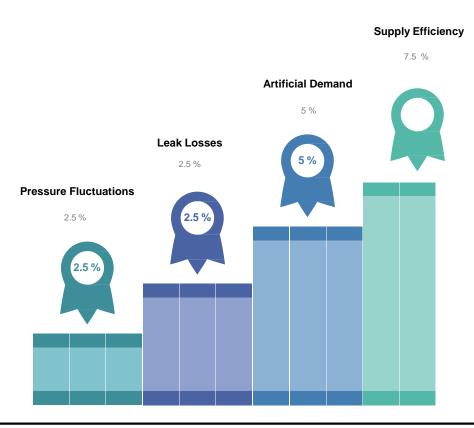
Pressure Measurer Orifice Pl Sensors		Energy Loss					
Inlet (in barg)	Outlet (in barg)	In kWH	In kWH / Day				
6.9	6.7	46	1104				

The Return on Investment for installing the 3 Nos of Pitot Tube Flow Sensors was only 83 Days or Just Under 3 Months.

The Factory loses upto 750 CFM in Air Leakages and thereby Wasting upto 1718 kWH / day.

The Return on Investment for installing the 3 Nos of WADS 205 Pressure Dew Point Sensors with Buzzer Alarm and Indicator Lights was only 27 Days or Just Under 1 Month.

The Plant was forced to increase the Loading Set Points at the Compressor by upto 1 bar resulting in Energy Loss of Upto 1872 kWH / day. Since the Plant was having unregulated pressure usage at multiple production machines, the artificial demand was measured was at 736 CFM or equivalent to 3456 kWH Per Day.


There has been a realised energy savings of upto 1862 kWH / day. PCI Department now works with stable pressure and without any pressure related problems. The Return on Investment for installing 21 Nos of WAFS 106 Smart Thermal Mass Flow Sensors was Just Under 9 Months.

Energy Savings - 17.5 %

Carbon Reductions - 3162 Tons

Equivalent to Planting of 15811 Fully Grown Trees

Cost Savings - Rs 2.32 Crores

Return on Investment - 6 Months

CONTACT US

ADDRESS - ASIA

Systel Business Centre, # 12 Sri Venkatalakshmi Nagar, Singanallur, Coimbatore - 641005, India

PHONE

+91-9655028715

E-MAIL

info@systel.asia

FACEBOOK

https://www.facebook.com/systel.asia

ADDRESS - EUROPE

Pilestraede 58, DK-1112

Copenhagen,

Denmark.

PHONE

+45-36992197

🖸 E-MAIL

ho.europe@systel.asia

TWITTER

https://twitter.com/systelasia

ENERGY EFFICIENCY IN HEATING & COOLING SYSTEMS

Navin Kumar and Sandeep Koundinya, Aspiration Energy and Energy & Emissions Lab, IIT-Madras

MSME training series #03# – Energy efficiency

Energy efficient innovations in heat pumps.

Navin Kumar Sandeep Koundinya

Aspiration Energy and Energy & Emissions Lab, IIT-Madras

Aspiration Energy

Leaders in Sustainable Heating Solutions

About Aspiration Energy

First commercial deployment of 90 °C Introduction of Industrial heat More than 4.5 MW in industrial heat heat pump in auto-component pumps, first project in an using heat pump deployed manufacturer automobile manufacturer Added hospitality as a customer Heat as a Service model enabled by Deployed 24x7solar thermal segment IOT heat using energy storage IOT enabled thermal energy monitoring added to portfolio 2019 - 2021 2017 2016 2009 2012 2013-16 Adjudged climate solver by WWF Installed one of world's largest rooftop Established by Bhoo Thirumalai "Parivarthan" award from MNRE Product development – solar solar hotwater systems for industrial Leaders in solar industrial heat in India cooling using solar heat use Partners in IEA task 49 Rooftop solar PV Pivot to industrial solar heating using More than 2.5 MW thermal deployed solar

Product line

Coming soon...

ThermaGen Heatpumps

- > Up to 90 C process temp
- > 3000 kW installed
- > Unique rental model for heatpump trials
- > Thermal energy PPA

Solar Heating

Up to 90 C process temp

- > ~ 2.4 MW installed till date
- > India's first 24x7 process heat with thermal battery

Thermelgy -Thermal Energy Monitoring

- > Remote monitoring of thermal energy for heat pumps, solar heat and process heating
- > IOT enabled billing, health monitoring, preventive health

Product innovation

CO2 Heat pumps

120 C Heat pumps

Heat Pump

Industrial Heat Pumps

Unit Cost/1000kcal

Sector	Process	20	40	80	80	100	120	1.60	7.0	0 1	80	200	CC
Paper	Drying							18					90 - 240
	Boiling			- 3	1 18								3 141 - 196
	Bleaching				1,83								40 - 160
	De-inting			- 1					1111			9	563 = 26
Food to beverage	Drying				15 15			- 8	-			()	40 - 256
	Evaporation .								1011			3	40 - 170
	Pasteurization				100				11				60 - 160
	Sterilization				100								100 - 140
	Boiling			- 7	- 10								FO - 126
	Distillation												40 - 100
	Blanching					8							600 96
	Scalding			100									60 - 90
	Concentration			- 1		-						1 6	60 - 80
	Tempering											4	40 - 90
	Smoking											0	20 - 80
Chemicals	Destillation												100 - 30x
	Compression												110 - 170
	Thermoforming									_			130 - 160
	Concentration												120 - 140
	Molling				-			_					#0 - 130
	Bioresctions			- 0	-	_		_					20 - 66
Automotive	Resin molding				100								70 - 130
Paramone	Drying								- 3				60 - 200
	Piciding							_	_	_			20 - 100
	Degress/ng			-									20 - 100
Metal	Electropisting							_					263 - 96
	Phosphating	_		_				\rightarrow			_	_	363 ~ 96
	Chromating					_		\rightarrow			_		203 - 86
	Purging	_						_					40 - 20
	Injection molding	_	_	_		-	_		-				943 - 3406
Plattic	Pellets drying	_	_		- 0	_	_	_	_	_			40 - 150
	Preheuting	_			_		_	_	_		_	-	50 - 70
	Surface treatment	_		_	-		_	_	_		_	_	20-120
Rechanical Engineering	Cleaning	_	_	_	_	_		_	_		_	_	40 - 90
	Coloring	_	_		_	-	_	-	-	_		_	40 - 160
Textiles		_	_		_	_	_	_	_		_	_	60 - 130
	Drying	_	_		_	_	_	_	_		_	_	
	Washing	_		_	_	_	_	_	_		_	_	40 - 110
Wood	Bleaching	_			_	_	_	_				_	120 - 100
	Address of the Control of the Contro	_	_	_	_	_	_	_	_	_		_	
	Pressing	_	_	_	_	_	_	_		_	_	-	120 - 170
	Drying	_	_					_	_		_	_	40 - 150
	Steaming	_	_										20 - 100
	Cocking				_	-		_					BIO - 190
	Staining	_	_	_		_	_	_					50 - 80
Several sectors	Pickling	_						_				-	40 - 70
	Hot water							_					20 - 110
	Preheating	_						_				9	20 - 100
	Washing/Cleaning							_					30 - 90
	Space heating			- 1	31.								293 + 963

Technology Readiness Level (TRL):

Conventional HP <80°C, established in industry
Commercial available HP <80°C, established in industry

Source: Arpagaus et al.

Temperature

Performance Comparison

DESCRIPTION	BEFORE	AFTER
Heating Solution	Boiler	Heat Pump
Energy Source	LPG	Electricity
Capacity	20L kCal	223k kCal
Operating Costs	Rs.50 / litres	Rs.8 / kWh
Consumption / day	650 kg	1800 kWh

Success Story

Innovation Benefits

Energy Saving calculation:

SI. no	Particulars	value	Units
1	Avg. LPG Consumption Per Day	650	kg
2	Avg. Chiller Consumption Per Day	700	kWh
3	Thermal Energy used per day for boiler	4420	KWh
4	Electrical energy used per day for chiller	700	KWh
5	Heat pump electrical consumption		
	per day	1800	KWh
6	Total Energy saved per day	3320	KWh
7	Total Energy saved per year	996	MWh

CO₂ Emission calculation:

SI. no	Emission component	value	Units
1	chiller	195.3	Metric Tons
2	Boiler	590	Metric Tons
3	Heat Pump	502.2	Metric Tons
4	Total emission saved	283	Metric Tons

savings

by reduced local CO2 emissions

· Reduction in localized pollution

- · Heating was used in existing process
- . The byproduct cooling from the Heat Pump was also utilized effectively.

· Payback period of less than one year.

. More than 50% energy

Cost Saving calculation:

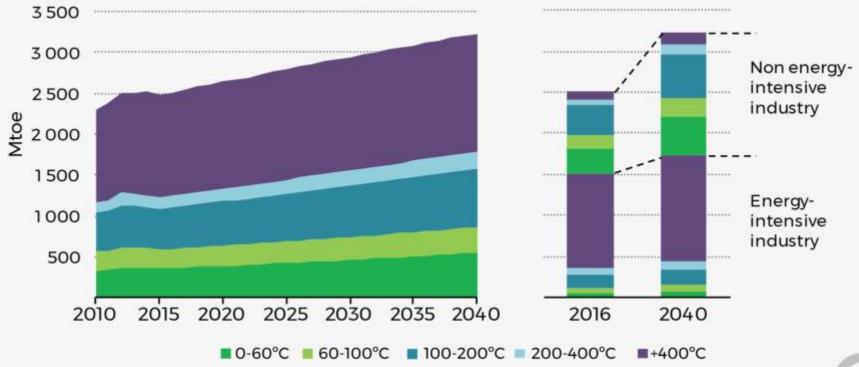
Sl. no	Particulars	value	Units
1	Avg. LPG Consumption Per Day	650	kg
2	Avg. Chiller Consumption Per Day	700	kWh
3	LPG Rate per Kg	50	Rs.
4	Cost of Electricity	8	Rs/kWh
5	Number of Working Days per		
	year	300	days
6	Amount spent for LPG per year	97,50,000	Rs.
7	Amount spent for Chiller per		
	year	16,80,000	Rs.
8	Total amount spent for boiler	1,14,30,000	
	and chiller per year		Rs.
9	Electrical Consumption for heat	1,800	
	pump per day		kWh
10	Amount spent for heat pump		
	running per year	43,20,000	Rs.
11	Total Savings per year	71,10,000	Rs.
	Total Saviligs per year	7 1,10,000	113.

Payback calculation

S.no	Particulars	value	Units
1	Avg. LPG Consumption Per Day	650	kg
2	Avg. Chiller Consumption Per Day	700	kWh
3	LPG Rate per Kg	50	Rs
4	Cost of Electricity	8	Rs/kWh
5	Number of Working Days per year	300	days
6	Amount spent for LPG per year	97,50,000.00	Rs.
7	Amount spent for Chiller per year	16,80,000.00	Rs.
8	Total amount spent for boiler and chiller	1,14,30,000.00	Rs.
9	Electrical Consumption for heat pump per day	1,800.00	kWh
10	Amount spent for heat pump running	43,20,000.00	Rs
11	Total Savings per year	71,10,000.00	Rs
12	Investment for Heat Pump	78,08,338.00	Rs
13	Payback	13	Months

Cost of Technology

Typical installation cost/kW:Rs. 10,000/kW-33,000/kW


- Depends on: Integration method, hot water delivery temperature, online remote monitoring and diagnostics.
- The project described here was implemented at Rs. 30,032/kW

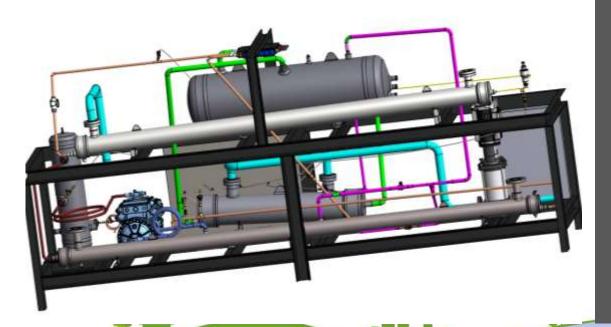
In most applications, the heat pump system is installed as a hybrid:

- Existing heating source in by-pass or back-up mode
- Direct or indirect heat exchange method:
 - Indirect: additional heat exchanger is integrated with the customer process.
 - Direct heating, process fluid is brought in to the heat pump and returned after heating.

Global industrial demand by temperature level and sector

World Energy Outlook 2017

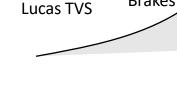
If the heat delivery temperature can be breached beyond 100 C, nearly 40-50 % of the global industrial heat can be served using heat pumps, from < 20% currently



AEPL ongoing Innovations

120 °C steam generator

AEPL ongoing Innovations


CO₂ Heat pump

AEPL's Chasm

HAND-TO-HAND COMBAT Inspired by Geoffrey A Moore, "Crossing the Chasm" New segment added: Hotels, Chemical CHASM Industry PRAGMATISTS () MASS MARKET EARLY ADOPTERS Bajaj **Eicher motors** Ford Hyundai Greaves Fiat Amalgamation Godrej **Royal Enfield TATA** Honda Piaggio **TAFE TVS Motors** Ashok Leyland Wheels India Rane Hero Minda **Brakes India** Force

Suzuki

Mahindra

STAMPEDE!

THE

BOWLING ALLEY

A Negawatt is better than the Megawatt!!

>> Leaders in sustainable heating solutions!! >> Contact us @ info@aspirationenergy.com/044-42185301

Question and Answer Session II

Q&A1 Are you aware of or availed any government scheme for energy efficiency?

Poll Results (multiple answers allowed):

Schemes from Bureau of Energy Efficiency (BEE)	37%
Schemes from Small industrial Development Bank of India (16%
Schemes from Ministry of Micro, Small and Medium Enterprises	37%
Schemes from State governments	11%
Not aware or availed of any government scheme so far	37%

Q&A2 Which of these topics would you most like to hear about in the next sessions of this training series?

Poll Results (multiple answers allowed):

Renewable Energy Opportunities available to MSMEs in Indi	
Models for Implementing EE and RE (ESCO/RESCO)	53%
Green Policies and Schemes for MSME Sector	47%
Resource Efficiency	53%
Water & Waste Management	58%

CLOSING REMARKS

Atik Sheikh, Counsellor, CII-GBC

The current activities under this project are supported the MacArthur Foundation

THANK YOU

Contact Us:

- Megha Nath | Senior Project Associate, WRI India | megha.nath@wri.org
- Atik Sheikh | Counsellor, CII | <u>atik.sheikh@cii.in</u>